pub type Point2D = Point2D<f32, Measure>;
Aliased Type§
struct Point2D {
pub x: f32,
pub y: f32,
}
Fields§
§x: f32
§y: f32
Implementations
§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
pub fn origin() -> Point2D<T, U>where
T: Zero,
pub fn origin() -> Point2D<T, U>where
T: Zero,
Constructor, setting all components to zero.
pub fn zero() -> Point2D<T, U>where
T: Zero,
pub fn zero() -> Point2D<T, U>where
T: Zero,
The same as [Point2D::origin
].
pub const fn new(x: T, y: T) -> Point2D<T, U>
pub const fn new(x: T, y: T) -> Point2D<T, U>
Constructor taking scalar values directly.
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Point2D<T, U>
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Point2D<T, U>
Constructor taking properly Lengths instead of scalar values.
pub fn splat(v: T) -> Point2D<T, U>where
T: Clone,
pub fn splat(v: T) -> Point2D<T, U>where
T: Clone,
Constructor setting all components to the same value.
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Point2D<T, U>
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Point2D<T, U>
Tag a unitless value with units.
pub fn map<V, F>(self, f: F) -> Point2D<V, U>where
F: FnMut(T) -> V,
pub fn map<V, F>(self, f: F) -> Point2D<V, U>where
F: FnMut(T) -> V,
Apply the function f
to each component of this point.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Point2D;
let p = Point2D::<u32>::new(5, 15);
assert_eq!(p.map(|coord| coord.saturating_sub(10)), Point2D::new(0, 5));
pub fn zip<V, F>(self, rhs: Point2D<T, U>, f: F) -> Vector2D<V, U>where
F: FnMut(T, T) -> V,
pub fn zip<V, F>(self, rhs: Point2D<T, U>, f: F) -> Vector2D<V, U>where
F: FnMut(T, T) -> V,
Apply the function f
to each pair of components of this point and rhs
.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::{default::{Point2D, Vector2D}, point2};
let a: Point2D<u32> = point2(50, 200);
let b: Point2D<u32> = point2(100, 100);
assert_eq!(a.zip(b, u32::saturating_sub), Vector2D::new(0, 100));
§impl<T, U> Point2D<T, U>where
T: PartialOrd,
impl<T, U> Point2D<T, U>where
T: PartialOrd,
§impl<T, U> Point2D<T, U>where
T: Copy,
impl<T, U> Point2D<T, U>where
T: Copy,
pub fn extend(self, z: T) -> Point3D<T, U>
pub fn extend(self, z: T) -> Point3D<T, U>
Create a 3d point from this one, using the specified z value.
pub fn to_vector(self) -> Vector2D<T, U>
pub fn to_vector(self) -> Vector2D<T, U>
Cast this point into a vector.
Equivalent to subtracting the origin from this point.
pub fn yx(self) -> Point2D<T, U>
pub fn yx(self) -> Point2D<T, U>
Swap x and y.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.yx(), point2(-8, 1));
pub fn to_untyped(self) -> Point2D<T, UnknownUnit>
pub fn to_untyped(self) -> Point2D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.x, point.to_untyped().x);
assert_eq!(point.y, point.to_untyped().y);
pub fn cast_unit<V>(self) -> Point2D<T, V>
pub fn cast_unit<V>(self) -> Point2D<T, V>
Cast the unit, preserving the numeric value.
§Example
enum Mm {}
enum Cm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.x, point.cast_unit::<Cm>().x);
assert_eq!(point.y, point.cast_unit::<Cm>().y);
pub fn to_array(self) -> [T; 2]
pub fn to_array(self) -> [T; 2]
Cast into an array with x and y.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.to_array(), [1, -8]);
pub fn to_tuple(self) -> (T, T)
pub fn to_tuple(self) -> (T, T)
Cast into a tuple with x and y.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.to_tuple(), (1, -8));
pub fn to_3d(self) -> Point3D<T, U>where
T: Zero,
pub fn to_3d(self) -> Point3D<T, U>where
T: Zero,
Convert into a 3d point with z-coordinate equals to zero.
pub fn round(self) -> Point2D<T, U>where
T: Round,
pub fn round(self) -> Point2D<T, U>where
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).round(), point2::<_, Mm>(0.0, -1.0))
pub fn ceil(self) -> Point2D<T, U>where
T: Ceil,
pub fn ceil(self) -> Point2D<T, U>where
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).ceil(), point2::<_, Mm>(0.0, 0.0))
pub fn floor(self) -> Point2D<T, U>where
T: Floor,
pub fn floor(self) -> Point2D<T, U>where
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).floor(), point2::<_, Mm>(-1.0, -1.0))
pub fn lerp(self, other: Point2D<T, U>, t: T) -> Point2D<T, U>
pub fn lerp(self, other: Point2D<T, U>, t: T) -> Point2D<T, U>
Linearly interpolate between this point and another point.
§Example
use euclid::point2;
use euclid::default::Point2D;
let from: Point2D<_> = point2(0.0, 10.0);
let to: Point2D<_> = point2(8.0, -4.0);
assert_eq!(from.lerp(to, -1.0), point2(-8.0, 24.0));
assert_eq!(from.lerp(to, 0.0), point2( 0.0, 10.0));
assert_eq!(from.lerp(to, 0.5), point2( 4.0, 3.0));
assert_eq!(from.lerp(to, 1.0), point2( 8.0, -4.0));
assert_eq!(from.lerp(to, 2.0), point2(16.0, -18.0));
§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
pub fn cast<NewT>(self) -> Point2D<NewT, U>where
NewT: NumCast,
pub fn cast<NewT>(self) -> Point2D<NewT, U>where
NewT: NumCast,
Cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
pub fn try_cast<NewT>(self) -> Option<Point2D<NewT, U>>where
NewT: NumCast,
pub fn try_cast<NewT>(self) -> Option<Point2D<NewT, U>>where
NewT: NumCast,
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
pub fn to_usize(self) -> Point2D<usize, U>
pub fn to_usize(self) -> Point2D<usize, U>
Cast into an usize
point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
pub fn to_u32(self) -> Point2D<u32, U>
pub fn to_u32(self) -> Point2D<u32, U>
Cast into an u32
point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
§impl<T, U> Point2D<T, U>where
T: Euclid,
impl<T, U> Point2D<T, U>where
T: Euclid,
pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
Calculates the least nonnegative remainder of self (mod other)
.
§Example
use euclid::point2;
use euclid::default::{Point2D, Size2D};
let p = Point2D::new(7.0, -7.0);
let s = Size2D::new(4.0, -4.0);
assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));
assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));
assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));
pub fn div_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
pub fn div_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
Calculates Euclidean division, the matching method for rem_euclid
.
§Example
use euclid::point2;
use euclid::default::{Point2D, Size2D};
let p = Point2D::new(7.0, -7.0);
let s = Size2D::new(4.0, -4.0);
assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));
assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));
assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));
§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
pub fn distance_to(self, other: Point2D<T, U>) -> T
Trait Implementations
§impl<T, U> AddAssign<Size2D<T, U>> for Point2D<T, U>where
T: AddAssign,
impl<T, U> AddAssign<Size2D<T, U>> for Point2D<T, U>where
T: AddAssign,
§fn add_assign(&mut self, other: Size2D<T, U>)
fn add_assign(&mut self, other: Size2D<T, U>)
+=
operation. Read more§impl<T, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>
impl<T, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>
§fn add_assign(&mut self, other: Vector2D<T, U>)
fn add_assign(&mut self, other: Vector2D<T, U>)
+=
operation. Read more§impl<T, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>where
T: ApproxEq<T>,
impl<T, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>where
T: ApproxEq<T>,
§fn approx_epsilon() -> Point2D<T, U>
fn approx_epsilon() -> Point2D<T, U>
§fn approx_eq_eps(&self, other: &Point2D<T, U>, eps: &Point2D<T, U>) -> bool
fn approx_eq_eps(&self, other: &Point2D<T, U>, eps: &Point2D<T, U>) -> bool
true
if this object is approximately equal to the other one, using
a provided epsilon value.§fn approx_eq(&self, other: &Self) -> bool
fn approx_eq(&self, other: &Self) -> bool
true
if this object is approximately equal to the other one, using
the approx_epsilon
epsilon value.§impl<'de, T, U> Deserialize<'de> for Point2D<T, U>where
T: Deserialize<'de>,
impl<'de, T, U> Deserialize<'de> for Point2D<T, U>where
T: Deserialize<'de>,
§fn deserialize<D>(
deserializer: D,
) -> Result<Point2D<T, U>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Point2D<T, U>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
§impl<T, U> DivAssign<Scale<T, U, U>> for Point2D<T, U>
impl<T, U> DivAssign<Scale<T, U, U>> for Point2D<T, U>
§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/=
operation. Read more§impl<T, U> DivAssign<T> for Point2D<T, U>
impl<T, U> DivAssign<T> for Point2D<T, U>
§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/=
operation. Read more§impl<T, U> Floor for Point2D<T, U>where
T: Floor,
impl<T, U> Floor for Point2D<T, U>where
T: Floor,
§impl<T, U> MulAssign<Scale<T, U, U>> for Point2D<T, U>
impl<T, U> MulAssign<Scale<T, U, U>> for Point2D<T, U>
§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*=
operation. Read more§impl<T, U> MulAssign<T> for Point2D<T, U>
impl<T, U> MulAssign<T> for Point2D<T, U>
§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*=
operation. Read more§impl<T, U> Round for Point2D<T, U>where
T: Round,
impl<T, U> Round for Point2D<T, U>where
T: Round,
§impl<T, U> Serialize for Point2D<T, U>where
T: Serialize,
impl<T, U> Serialize for Point2D<T, U>where
T: Serialize,
§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
§impl<T, U> SubAssign<Size2D<T, U>> for Point2D<T, U>where
T: SubAssign,
impl<T, U> SubAssign<Size2D<T, U>> for Point2D<T, U>where
T: SubAssign,
§fn sub_assign(&mut self, other: Size2D<T, U>)
fn sub_assign(&mut self, other: Size2D<T, U>)
-=
operation. Read more§impl<T, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>
impl<T, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>
§fn sub_assign(&mut self, other: Vector2D<T, U>)
fn sub_assign(&mut self, other: Vector2D<T, U>)
-=
operation. Read more